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1. Purpose of data exploration, screening & adjustments

One of the basic tensions in all data analysis and modeling is how much you have all your questions
framed before you begin to look at your data. In the classical statistical framework, you are suppose
to have all your hypotheses laid out in advance and not stray from that course during the analysis.
Allowing your data to suggest new statistical tests raises the risk of “fishing expeditions” or “data-
dredging” — indiscriminate scanning of the data for patterns. But this philosophy may be too strict
for environmental scientists. Unexpected patterns in the data can inspire you to ask new questions,
and it is foolish not to explore your hard-earned data in this regard. In addition, exploratory analyses
can reveal aspects of the data that may help you construct a more appropriate environmental model
to answer the original question. I see no particular harm in letting the data guide you to a better
model, as long as you recognize the risk of detecting patterns that are not real and seek to confirm
the findings with subsequent study. Moreover, it is always prudent to screen your data for problems
before undertaking a sophisticated statistical model. In particular, you may have missing data values
which may cause problems later if they are not dealt with up front. Some variables may not contain
sufficient information content to warrant including them in the analysis and you want to identify
those variables and remove them early on. There may be a need to transform and/or standardize
variables to put them on equal footing in the analysis or better meet statistical assumptions or
change the data to better reflect the environmental question. And lastly, there is always a need to
screen your data for extreme values, or “outliers” which can exert undue pull on the analysis.
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2. Common parameters and statistics

2.1 Parameters and statistics

There are many common parameters (population) and statistics (sample) that are commonly used to
describe data patterns; it behooves you to become very familiar with these as a means of describing
your data and screening for problems before you attempt to analyze a more complex statistical

model. First, it is important to understand the difference between a parameter and a statistic in the
formal sense.
Parameters... measured characteristics of the population, usually unknown and/or unknowable yet

the thing we are most interested in knowing,.
Statistics... measured characteristics of the sample, which we typically use to estimate population

parameters that we cannot measure directly. Statistics are the basis for all of statistical inference,
since to infer is to draw conclusions about a population from a sample.
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22 The “normal” distribution

Before describing some of the more common parameters and statistics, however, it is necessary to
introduce the “normal” distribution because it is frequently used as a reference framework for
describing data characteristics and is the basis for most classical statistics. We will describe this
distribution more formally in a later section, but for now, suffice it to say that a normal distribution
describes a data set that exhibits a symmetrical “bell- shaped” frequency distribution. That is, a
collection of values that concentrate around a single central tendency (the average value) and trail
off in both directions at the same rate.
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23 Measures of central tendency

Measures of central tendency measure of the "middle" or "expected" value of the data set and are
used almost universally to describe sample characteristics and as the basis for statistical inference.
There are many different measures of central tendency, but some of the most common are as
follows:

*  Mean... the “average” value of the group; typically the arithmetic mean is used in
environmental science, but some circumstances warrant using the geometric or harmonic
means.

*  Median... the middle number of the group when they are ranked in order (50" quantile).

*  Mode... the most frequently occurring number.
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24 Measures of spread

Measures of spread measure the dispersion of the data set or how spread out the data is and are used
almost universally to describe sample characteristics and as the basis for statistical inference. There
are many different measures of spread, but some of the most common based on deviations from the
mean, or the spread about the mean, are as follows:

*  Variance... mean squared deviation from the mean or expected value. Note, the units are
squared so they are somewhat uninterpretable.

*  Standard deviation... root mean squared deviation from the mean or expected value; i.e., the
square root of the variance. The standard deviation has special meaning for normally
distributed variables, because the mean * 1 standard deviation captures approximately 68%
of the values, * 2 standard deviations captures approximately 95% of the values, and *+ 3
standard deviation captures more than 99% of the values. Note, the standard deviation is in
the same units as the measurement variable, which are therefore interpretable, unlike the
variance which is in squared units.

*  Coefficient of variation... normalized measure of spread, defined as the standard deviation
divided by the mean (often multiplied by 100 to express as a percentage). The coefficient of
variation allows us to compare the spread for variables measured on different scales.



Explore, Screen & Adjust Data

~J

Exploratory Analysis... common parameters &
statistics
Measures of Spread

m Neasure of the dispersion of

the data set or how spread out i
the data 1s
» Median absolute derviation... : :

2 - % Z 'V_‘fﬂﬁi_,'_) E’ 7?!’(3(3'?(1; |’£‘ —2 fﬂ{é'Cfl@P’li-l
median absolute deviation . ’l i
from the median i
Range... absol £ | /\\

> i2ge... absolute range o 2
N ~ © ’"omve = ax g \7723/2 X
values (from mm to max) . éz ()a ‘i ( ) |
> Interguariile range... range
between the 25™ and 75™ IOR = ”DF;@ CDF( 25)
quantiles of the data yda BN
'/./l |5.73%l ! I‘s 23%'\\|

So 4o 30 20 -lo 0 1o 20 30 4o So 6o

Not all measures of spread are based on deviations from the mean. Some measures refer to

deviation from the median or describe the absolute range of values or the range between certain
quantiles of the data.. For example:

*  Median absolute deviation... median absolute deviation from the median (MAD).

*  Range... absolute range of values (from min to max).

*  Interquartile range... range between the 25" and 75" quantiles of the data (IQR). Note, the IQR
* 1.5xIQR captures roughly 99% of the distribution and is roughly equivalent to the mean *

3 standard deviations. Moreover, the IQR and the IQR * 1.5xIQR is the basis for a box-
and-whisker plot (see later).
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2.5 Measures of non-normality

Measures of non-normality measure the shape of the distribution relative to a “normal” distribution;
L.e., deviation from the symmetric bell-shaped distribution. The most common statistics are

skewness and kurtosis:

Skewness... measure of asymmetry about the mean; it is a dimensionless version of the 3™
moment about the mean. Notice the similarity to the variance, except that the deviations
from the mean are cubed instead of squared. The denominator is the standard deviation
cubed, which is normalizing constant and makes the statistic dimensionless, since the units
cancel each other out. Defined in this manner, skewness = 0 for a normal distribution. A
positively skewed distribution (also called right skewed) is a distribution with a longer right-

side tail, which is prevalent with environmental data.
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*  Kuntosis... measure of peakedness, or flat-toppedness, of a distribution; it is a dimensionless
version of the 4™ moment about the mean. Again, notice the similarity to the vatriance,
except that the deviations from the mean are raised to the 4™ power instead of the 2™
power. The denominator is the standard deviation raised to the 4™ power, which is
normalizing constant and makes the statistic dimensionless, since the units cancel each other
out. A normal distribution has a value of 3, so often this is subtracted so that kurtosis = 0
for a normal distribution. Defined in this way, a positive kurtosis is more peaked than
normal and is known as a leptokurtotic distribution, whereas a negative kurtosis is more flat
topped than normal and is known as a platykurtotic distribution. To help remember the
distribution, remember that plat rhymes with flat, plat is short for plateau, and plat is short
for platypus which have a flat square-tipped tail.
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3. Single variable plots

While the common parameters and statistics described above are quite useful for describing
variables and their distributions, most people find graphical summaries more compelling and
informative. There are myriad types of plots for single variables — too many to cover here. However,
there are several common graphical plots that are nearly universally used for continuous variables, so
it behooves us to understand these at a minimum.

3.1 Empirical distribution function

The empirical distribution function (EDF) is a simple rank order distribution of increasing values of
the variable. A variable with a perfectly uniform distribution of values within its range (minimum to
maximum), so that no one value is more common than another, will have points that fall on a
perfect diagonal straight line. Deviations from the diagonal indicate non-uniformity. A normally
distributed variable will have a sigmoidal shape. Deviations from these reference lines can be quite
useful in quickly revealing departures from these common distributions.
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The empirical cumulative distribution function (ECDF or just CDF) is derived from the EDF and
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axis). The ECDF is read as
follows. Start with any value of
the x variable and draw a vertical
line upwards from that point on
the x axis until the line intersects
the ECDF. From that point
draw a horizontal line to the left

Empirical Distribution Function
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Exploratory Analysis... single variable plots
Empirical Cumulative Distribution Plot
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3.3 Histogram

A histogram is a graphical display of tabulated frequencies (or probabilities), shown as bars; it shows
what proportion of cases fall into each of several adjacent non-overlapping categories; and it is a way
of binning the data. Histograms are extremely useful for quickly visualizing the distribution of values
in a variable. As environmental data are often highly skewed, a histogram will readily reveal that
skew. Moreover, extreme values in the distribution (i.e., potential outliers), which we will discuss
later, often show up as isolated bars on the tail of the distribution. In addition, for many kinds of
data, such as species abundance variables, pay attention to the level of quantitative information
present (i.e., whether there is a range of abundances or whether the principal signature is one of
presence versus absence) since this may determine the need for a binary transformation (discussed
later).
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An alternative way to examine the distribution of a variable is with a box-and-whisker plot. Box and

whisker plots can depict the skewness of a distribution quite nicely and also can be used to identify

extreme observations. The central box shows the data between the ‘hinges’ (roughly quartiles), with

the median represented by a solid line. “Whiskers’ go out to the extremes of the data, and very

extreme points (defined as samples that are by default farther than 1.5 times the inter-quartile range

from the box) are shown by themselves.
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3.5 Normal quantile-qguantile plot

Another useful way of examining the distribution of each variable is to compare the empirical
cumulative distribution function (ECDF) to the expected ECDF for a normal distribution. A normal
quantile-quantile (or qgnorm) plot does just this. The qgnorm plot depicts the sample quantiles on
the x axis against the theoretical quantiles from a normal distribution of the same sample size on the
_yaxis. If the data are from a perfectly normal distribution, the data will lie on a diagonal straight line.
Departures from the diagonal indicate deviations from a normal distribution. Skewed distributions
show up nicely as deviations from the line at the tails.
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The normal quantile-quantile plot is a bit confusing at first and so it warrants some additional
explanation of how it is created. First, we sort the variable (AMGO in this case) from smallest to
largest value and assign a rank (tAMGO) and the corresponding quantile of the data it represents
(AMGO). As it turns out, there are several different methods for computing quantiles depending
on how one treats ties and the bookends (min and max) data values, but we won’t go into the details
of the various methods here. Importantly, computing the quantile value of a standard normal
distribution (below) is somewhat problematic for one or both of the bookends. Consequently, it is
conventional to adjust the quantiles by an offset (ZAMGO); e.g., given as: (1:n - a)/(n + (1-a)-a),
where n is the number of observations, and a = ifelse(n <= 10, 3/8, "2)). Thus, in our case, a = 0.5,
and instead of a quantile of 1 for the maximum data value, we end up with 0.98.

Next, for plotting purposes only, we can adjust the AMGO data values to their corresponding z-
scores (zZAMGO) by subtracting the mean and dividing by the standard deviation, such that the
resulting values have a mean = 0 and sd = 1. Note, this does not change the shape of the
distribution, only the scale of the axis.

Lastly, for either the original quantiles of AMGO (QAMGO) or the adjusted quantiles (2AMGO),
we compute the corresponding quantile values of a standard (i.e., z-scores) Normal distribution
(gNorm and q2Norm, respectively). Thus, for each value of AMGO we have the corresponding
quantile value of a theoretical Normal distribution with the same mean and standard deviation.
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Now we are ready to produce the QQnorm plot. In the top figure shown here, we plotted kernel
density curves (for now, think of these as simply smoothed histograms) for the z-scores of AMGO
(zAMGO) and for the corresponding z-scores of a standard Normal distribution. Note, because we
are plotting z-scores, both variables have the same mean = 0 and sd = 1. Thus, the differences in the
shapes of the curves reflects differences between the empirical distribution of AMGO and a
corresponding theoretical Normal distribution. As you can see, the shapes of the curves differ, with
the zZAMGO displaying a positive or right skew and the q2Norm displaying the expected bell shape
for a Gaussian (or Normal) distribution.

In the bottom figure, we plotted the z-scores of AMGO (zAMGO) against the corresponding
quantile values for the standard Normal distribution (q2Norm). Note, here we plotted g2Norm
instead of gNorm because this is the convention used in R in the qgqnorm() function. Superimposed
on the plot is a diagonal line through the origin (0,0) with a slope of 1. If the empirical distribution
of AMGO (represented here by the corresponding z-scores) was identical to a Normal distribution
(represented here by the z-scores of a Normal distribution, g2Norm), the points would all fall on the
diagonal line. In this case, however, due to the right-skewed distribution of AMGO, the points fall
off the diagonal line. Note, although we plotted the z-scores of AMGO in the plot shown here, we
could easily substitute the z-scores with the raw data values for the x-axis, as is the convention in the
qqnorm() in R. Nothing would change except the scale of the x-axis, but the interpretation is the
same.
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4. Measures of association

Before considering a formal statistical analysis involving multiple variables, it is always useful to
examine the nature of the relationships between pairs of variables, including both dependent and
interdependent relationships. These relationships can be critically important in determining the form
of the statistical relationship between the independent and dependent variables and evaluating the
underlying assumptions (e.g., linearity, multicolinearity) of the model to be employed.

The most basic measure of association between two variables is known as covariance and its
normalized version is known as correlation. There are different correlation coefficients, but the two
most commonly used in environmental studies are as follows:

*  Pearson’s r = covariance of two g-score standardized variables. Z-score standardized variables
are variables in which the data set is centered on zero and the spread is scaled such that the
variance and standard deviation equal 1 (more on this later).

s Spearman’s rho = covariance of two rank transformed variables. In this case, the data set is
tirst transformed to ranks and then the covariance is calculated. Spearman’s 7o is a more
appropriate measure of association than Pearson’s r for non-linear associations.
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(35-40)(3.3-2.2)+ Diagonals = variances
(5-40)(2.1-2.2)] @ Off-diagonals = covariances

Given the importance of covariance and correlation in statistical modeling, it is worth spending a
little time working through an example, especially so that we can see the relationship between
covariance and correlation.

The raw data matrix shown here contains 3 observations (rows) with 3 variables measured at each
site: Canopy cover (CCov), snag density (Snag), and canopy height (CHgt). The sample variance is
given for each variable (column) by calculating the average squared deviation from the mean. Note,
the customary n-1 in the denominator to adjust for the sample bias. Note also that the variance is
calculated separately for each variable. The sample covariance is given for each pair of variables and
shown in detail for the covariance between CCov and Snag. Note the similarity between the formula
for variance and covariance. Covariance is calculated much the same way as variance, except that the
deviations from the mean of each variable are multiplied instead of squaring the deviations from the
single variable. Thus, the units are again squared and meaningless. The covariance matrix (also called
the variance-covariance matrix) is simply a square symmetrical matrix of variances and covariances,
with the variances along the diagonal and the covariances in the off-diagonal positions. Since the
matrix is symmetric, only the lower triangle is shown.
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Exploratory Analysis... measures of association
Covartance and Correlation

Raw Data Matrix

Correlation (r)

OBS| CCov Shag CHgt
1| 180! {12} 35 Y xe)— D 2%
i P i 2
2] s {33 20 \/[HZ,\.'S—(Z o) |- (Zn) ]
3] 5 {21} 5
COL ey = ___[(B0)(80) + (35)(35) + (5)(5)] -[(120)(120]] =
38 )2+an+~>2‘ -(120%)] [3(80% +35% +5%) -(120%] }1,2
COlppnag = 3¢ 8()_n17 + (35)(3.3) + (5)2.1] -[{120y(6.61] =
{[3(80° +35° +5) -(120%] [3(1.27 +33 +2.1%) -(6.65] }1/2

Correlation (r) Matrix

CCov Snag CHgt
CCov 1.000
Snag -0.528 1.000
CHgt 0993  -0.427 1.000

Diagonals = internal association
Ott-diagonals = correlations

The calculation of Pearson’s r correlation coefficient is shown here for the same data matrix. The
formula for calculating Pearson’s ris rather cumbersome and not intuitive, but is shown here for
completeness. Note, the denominator of the equation a scaling factor that scales the result to range
between -1 and 1, where a -1 is a perfect inverse (or negative) correlation and a +1 is a perfect
(positive) correlation, and a 0 mean no correlation. A zero correlation indicates that the two
variables are statistically independent; i.e., they do not covary. Like the covariance matrix, the
correlation matrix is a square symmetric matrix with the correlation of a variable with itself (always a
perfect positive correlation, or 1) along the diagonals and the pairwise correlation coefficients in the
off-diagonal positions. Again, because the matrix is symmetric, only the lower triangle is shown.
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Exploratory Analysis... measures of association

Covariance and Correlation

Pearson’s r Correlation:

Raw Data Matrix

OBS| CCov Snag CHgt
1 80 1.2 35
2 35 3 3 20
3 5

ny (x,x.) - Zc_‘T'r

3

n?r —|Tr l " ??Zr -

Correlation (r) Matrix

CCov Snag CHgt
CCov 1.000
Snag -0.528 1.000
CHgt 0.993 -0427 1.000

Z-score

Standardized Data Matrix
Obs| Ccov Snag Chgt
Xy —Xj ‘ 1| 1.06e0 -0.949 1.000
s 2| -0.132 1.044 0.000
3| -0.927 -0.095 -1.000

" 21: (z;-_ —Zz; )(zr\_ —Zz )

Zx) | & n—1

Covariance Matrix

CCov Snag CHgt
CCov 1.000
Snag -0.528 1.000
CHgt 0.993 -0.427 1.000

It is important to understand the relationship between covariance and Pearson’s correlation
coefficient. The correlation between two variables is equal to their covariance computed on g-score
standardized variables. If we first standardized each variable using a 3-score standardization, which
involves centering each variable on 0 (i.e., shifting the mean to zero) and scaling the spread of each
distribution to unit variance (i.e., variance and standard deviation equal to 1), and then compute the
regular covariance between the variables, we get the same result as computing the correlation on the
raw data. Thus, correlation is simply standardized covariance. Whereas the covariance is unbounded
and entirely depends on the scale of the variable, the correlation is always bounded by -1 and 1.
Consequently, the correlation coefficient has a very straightforward and intuitive interpretation
whereas the covariance does not.
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Exploratory Analysis... measures of association

Covariance and Correlation Ranked Data Matrix
OBS| Ccov Snag CHgt
Spearman’s rho Correlation: 1 3 1 3
2 2 3 2
Raw Data Matrix ’
oBs| cc ; CHgt Rank : : f b :
ov na y — b3
1 80 1 92 gs Sores Z-score " S
: Standardized Data Matrix
2 35 33 20 — S CHat
3 5 2.1 5 €OV _onag gy
1 1 -1 1
2 0 1 0
3 -1 0 1
: : Z(zf —Zz; :)(z_;-x_ — E\) : . )
Correlation (rbe) Matrix i1 Covarniance Matrix
n—1
H Ccov_ Snag CHgt Ccov_ Snag CHgt
Ccov 1.0 — Ccov 10
Snag 05 [50) Snag 05 1.0
CHgt 10 05 10 CHgt 1.0 05 1.0

In a similar manner, Spearman’s 750 correlation is simply the Pearson’s correlation between rank-
standardized variables. First, we standardized each variable using a rank standardization, which
involves converting each data value to its rank.. Then, we standardize the ranked data using a z-
score standardization and compute the regular covariance as before. Whereas Pearson’s correlation
coefficient does a good job of describing the linear association between two continuous variables,
Spearman’s correlation coefficient is much less sensitive to departures from linear association and
thus is better for describing the

monotonic relationship between two Exploratory Analysis... measures of association
variables. By monotonic, I mean an
always increasing or always
decreasing relationship. Thus,
relationships that are consistently
positive or, conversely, consistently
negative, but not necessarily perfectly 2 s
linear, have a perfect Spearman’s
correlation of 1 (or conversely -1), as
in the figure shown here. Thus, the
choice between Pearson’s rand
Spearman’s b0 depends on whether
we are interested in linear or "
monotonic associations.

Covariance and Correlation

¥ Pearson’s 7 vs Spearman’s rho Correlation?

Pearson’s »= 0.58

x2

Spearman’s rho = 1

B5
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Exploratory Analysis... measures of association

Covariance and Correlation

Pearson’s » Correlation Spearman’s rho Correlation
Ccov Snag CHgt Ccov Snag CHgt
Ccov 1.00 Ccov 1.00
Snag -0.53 1.00 Snag -0.50 1.00
CHgt 0.99 -043 1.00 CHgt 1.00 -0.50 1.00
o

CCov CCov

As shown here, in this particular data set, Pearson’s rand Spearman’s 7o are quite similar and depict
a negative association between CCov and Snag — as CCov increases Snag generally decreases, but the
association is far from perfect, leading to -0.53 and -0.50 correlation coefficients, respectively.
Notice in the scatterplots how the rank-transformed data associated with the Spearman’s correlation
has a different scale for the x and y axes; specifically, the points are positioned at their ranks: 1, 2, or
3, instead of their raw scores as in the scatterplot on the left associated with the Pearson’s
correlation.
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Exploratory Analysis... plots of association
Scatterplot

m Graphical display of two
(or more) variables 2D Scatterplot

3D Scatterplot

08

0.6
1

BRCR

0.4

Elevation
BRCR
L]

1 N Lowess fit

0.0

a a0 80 100

T T T T T
%late-successional forest 0 20 40 80 80 100

%late-successional forest

5. Plots of association
S5.18catterplot

In cases involving continuous dependent and independent variables, it can be very useful to examine
scatterplots between pairs of dependent and independent variables prior to constructing and
anlayzing a statistical model. At the risk of data dredging, the graphical relationship display in the
scatterplot can provide an indication of the strength and nature of the dependent relationship and
thereby guide the selection of the appropriate statistical model to follow. The 2-dimensional
scatterplot shown here is a graphical depiction of the relationship between a single independent
variable (%olate-successional forest) and a single dependent variable (BRCR, representing the relative
abundance of brown creepers) for 30 landscapes in the Oregon Coast Range. Also shown is a robust
locally weighted regression (lowess) line that depicts the general pattern in the data without being
overly constrained by a specific statistical model of the relationship. Thus, the line can wiggle around
as much as needed to reflect the general patterns in the data. As such, it can be a useful guide as to
the shape of the underlying relationship and the form of the statistical model to be pursued later.
Note, scatterplots can be equally useful for assessing relationships between independent variables,
since many statistical methods assume that the independent variables themselves are truly
independent of each or at least not strongly dependent. Scatterplots can be extended to a third
dimension, as shown here on the left, in order to depict the relationship among three variables.
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Exploratory Analysis... plots of association
Scatterplot Matrix

® Matrix of scatterplots —— .
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5.2 8catterplot matrix

In cases involving many variables, it can also be quite useful (and efficient) to produce bi-variate
(2D) scatterplots for all pairs of variables. A scatterplot matrix does just this. As shown in this
example, the scatterplot matrix depicts variables along the diagonal, pairwise scatterplots in the
lower triangle, and the corresponding correlation coefficient (of your choice, e.g., Pearson’s r or
Spearman’s rho) in the upper triangle. Notice here that we also added the Lowess regression lines to
each of the scatterplots to enhance the interpretation.
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Exploratory Analysis... plots of association
Coplot

m Scatterplots of two Shen by
rartables conditioned ——— '
- - [E—
on a third; 1e., —
telattonship between x s :
;]’11(1‘)', gl‘"’ell :C 0 0 40 ."n r:1 P‘H Jln 4|n 60 nln m .
. i
Read from lower T i I
left to upper right . B

a .U 40 B0 B0 100

%late-successional forest

5.3Coplot

In cases involving the relationship between a dependent and independent variable, the relationship
may be obscured by the effects of other variables. In such cases it may be useful to examine a
scatterplot of x and y, but conditioned on a third variable, say 3. A coplot does just this. In the
example shown here, the panels in the coplot are ordered from lower left to upper right, associated
with the values of the conditioning variable in the upper panel, read left to right. So, the lower left
scatterplot is for points corresponding to the leftmost bar in the upper panel. In this case, the lower
left panel shows the scatterplot of %late-successional forest versus brown creeper abundance for the
nine landscapes at the lowest elevations. The next plot to the right shows the same thing but for
nine landscapes centered on slightly higher elevations. The top-right scatterplot shows the
landscapes at the highest elevations. In this manner, the scatterplot of %olate-successional forest and
brown creeper abundance is “conditioned” on elevation.
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Exploratory Analysis... missing data

Imputation

B Common in environmental data

m Options include:

» Ignore observations with ANGO AMRO BOCH BEXT BEMR | |:| AGR
misung data [2]
» Replace muzsing values basedon ¢
prior knowledge
» Estimate smssing values using
imputation: L
= Replace value with mean or :
median _
= Predict value: us:ing statistical 15 1 : |:|

model (e.g.. reprezzion, pradient
nearezt neirhbor)

6. Missing data

Despite the best laid plans, environmental data often contain missing data. Missing data can arise for
all sorts of reasons, the problem is what to do with it? There are lots of options for dealing with
missing data, ranging from simple to complex. Perhaps the easiest solution is to ignore or delete
observations with any missing data. This is a luxury we often cannot afford since we may have a
small sample size to begin with. Another option is to replace the missing values with values based
on expert prior knowledge. This of course is risky business and should not be done unless under
very special circumstances. A final solution is to estimate the missing values using methods of
imputation. The simplest of these, and therefore the most commonly used, is to replace the missing
value with the mean or median of the variable. The purpose behind this imputation method is to
replace the missing value with a value that will no exert any influence on the analysis. There are
much more complex methods of imputation, including for example using a statistical model to
predict the missing values based on the other variables in the data set. This procedure comes at the
cost of using the same data to predict the missing values as we intend to use in our final statistical
model. One solution of course is to use a separate set of variables for the imputation than we intend
to use in the final model. Regardless of the method employed, we have to be suspicious of any data
set in which a large number of missing values have been replaced.
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Exploratory Analysis... variable sufficiency
Sufficiency

s - = . 1 Empirical Distribution of Species Relative Occurrence
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7. Variable Sufficiency

An often overlooked but important step prior to statistical modeling is to screen the data for
insufficient variables (i.e., those that were sampled insufficiently to reliably characterize their
environmental pattern). For example, in community data sets rare species with very few records are
not likely to be accurately placed in ecological space. We must decide at what level of frequency of
occurrence we want to accept the ‘message’ and eliminate species below this level.

In the example shown here, 98 breeding birds species were detected across 30 landscapes in the
Oregon Coast Range. The x-axis lists species in their rank order of percent occurrence across the 30
landscapes, so the first point is for the species with the lowest percent occurrence, here
corresponding to 3.3% (or 1/30 landscapes). The plot reveals that there are 11 species with <5%
occurrence. It seems unlikely that we will be able to model these species patterns of occurrence in
relationship to the other species or the habitat variables (not shown) based on a single occurrence.
The information in this data set is insufficient to reliable model these species and therefore they
should be dropped before further analysis. Unfortunately, there is no objective threshold for
determining when there is sufficient information on a variable, so we must rely on intuition. In
community data sets it is quite common to drop rare species occurring on fewer than say four plots.
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8. Data transformations and standardizations

Once we have
thoroughly screened
our data, we may
find it useful or
necessary to
transform and/or
standardize the data.
There are both
statistical and
environmental
reasons for
considering
adjustment of the
data:

Statistical reasons:

* Better meet
statistical model
assumptions, e.g.,

Exploratory Analysis... ransformations &
standardizations

What's the Purposer
B Statistical

* Better meet statistical model assumptions, eg,
normahty, knearity, homogeneity of variance, ete.

» Mlake units of varables comparable when measured
on different scales )

® Environmental
* Beduce effect of total quantity m :ample units, to
put focus on relative quantities
» HEqualize (or othervaze alter) the relatve importance
of variable: (eg, common and rare species)

normality, linearity, homogeneity of variance, etc.. Typically, data adjustments for this purpose
are made after the initial modeling has revealed a problem and it is believed that an adjustment
of the data might solve the problem.

* Make units of variables comparable when measured on different scales. This is a common
situation in environmental data sets where the variables are often measured on wildly different

scales (e.g., pH, percent cover, mass, etc.). However, the need to adjust data to account for these
different scales entirely depends on the statistical model and method used.

Environmental reasons:

Reduce the effect of total quantity in sample units, to put the focus on relative quantities. This is
a common reason in community data sets involving sites by species data where the sites may
vary dramatically in total species abundance but the pattern that is of interest is the relative
abundance of the constituent species.

Equalize (or otherwise alter) the relative importance of variables (e.g., common and rare
species). This too is a common reason in community data sets involving sites by species data
where the species may vary dramatically in their total abundance across sites but the pattern that
is of interest is their relative abundance profiles across sites.
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Exploratory Analysis... transformations &

standardizations

Raw Data Matrix:

Column Z-score Standardization
b, =(x;-%) /s,

Site A B C D E F[ Total Site]] A B c D E F| Tota
1 1 1 1 3 3 1 10 1] -0.44 -0.44 -0.45 -0.31 -0.55 2.04] -0.20
2l 2 2 4 6 6 0 =20 2| -0.18 -0.18 -0.06 -0.06 -0.35 -0.41] -1.23
3, 10 10 20 30 30 0 100» 3| 194 1.94 200 2.00 1.64 -0.41 9.12
4 3 3 2 1 1 o 10 4| 0.09 0.09 -0.32 -0.49 -0.76 -0.41] -1.80
55 o o o o 1 o 1 5| -0.71 -0.71 -0.58 -0.57 -0.76 -0.41] -3.73
66 0 o o0 0o 20 o 20 6| -0.71 -0.71 -0.58 -0.57 0.82 -0.41[ -2.16
Total| 16 16 27 40 61 1] 161 Tota 0 0 0 0 0 0 0
Log \ : ,
Teans fc j% o ® Transformations are applied to
1(11151 s each element of the data
b;=log(x;+1) matrix, independent of the
Site A B C D E F| Total
1] 030, 0.30. 030 0.60. 0.60. 0.30] 2.41 other elements
2| 048 048 070 085 085 0.00] 3.34
3] 1.04 104 132 149 149 0.00{ 6.39 ' { 1777 - adi11¢ Y T
20 0me oar oket 00 ool 53| W Standardizations adjust matrix
5( 000 000 000 0.00 030 000 030 elements by a row or column
6| 0.00 000 000 0.00 1.32. 0.00] 1.32 :
Totall 2.42. 2.42. 280 3.24 4.86. 0.30| 16.05 standard (e.g., max, sum, etc.)

It is important to distinguish between a “transformation” and a “standardization” as these terms are
often confused and used in potentially misleading wasys.

A data transformation involves applying a mathematical function separately to each data value (i.e., a
single cell in the data frame). Each cell is transformed in isolation and independently of any other

cell or any other information in the data set. For example, a log transformation involves returning
the logarithm of the cell value, which depends only on the cell value itself.

A data standardization (sometimes also referred to as “relativization”) involves adjusting a data value
relative to a specified standard derived from the corresponding row (sample) and/or column
(variable) of the data frame. For example, dividing each cell value by the total or sum of that variable
across all samples is a standardization because the standard is derived from information outside of

the focal cell.
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8.1. Monotonic . ,
Transform ations Exploratory Analysis... monotonic

transformations
The Histogram of AMGO
transformations
commonly used
with environmental
data, including all ® To better meet assumptions of
of those considered | statistical test (e.g., normality,
below are N . 1 & s constant variance, etc.)

. . AMGO
monotonic; that is, _ o S e
. Residual Plot Im(BRCR~Is) ® To emphasize presence/absence
the transformation

(nonquantitative) signature
does not change -

the rank ordering

When to Transformr
® To adjust for highly skewed
variables

Density

Which Transformation?

00 01 02 03 04
.

Residual

of values. : . e

¢ i . % = Depends on type of data
When to 04 u‘z 03 04 n‘s n‘s n"r L) \\“hichevef \V(Z)I'ks beb\t
transform; Fitted value
The most difficult

aspect of data adjustment is knowing when and when not to transform (and/or standardize) the

data. Often times environmental data are highly skewed and/or range over several orders of

magnitude, and as such can benefit from a transformation, such as the log or square-root
transformation, that compress large values. For community data sets involving species abundances,
it is sometimes useful or more meaningful to transform the data to binary (presence/absence) data.

Here are some general rules for when to transform:

* To adjust for highly skewed variables. Sometimes it is necessary to make distributions more
symmetrical to better the assumptions of particular statistical tests. Environmental data often
contain positively skewed distributions which can in some cases be problematic for statistical
models. Some transformations act to pull the tail of the distribution in and in so doing reduce
skew.

* To better meet assumptions of statistical test (e.g., normality, constant variance, etc.). Parametric
statistical models come with sometimes onerous assumptions regarding the distribution of the
data and transformation can sometimes help us better meet those assumptions.

* To emphasize presence/absence (nonquantitative) signature. In some environmental data sets,
especially community data sets, the dominant pattern of interest may be the presence/absence of
an attribute (e.g., species present or absent) rather than the quantitative data collected.
Transformations can convert the data from quantitative to binary present/absent.

Which transformation?

Another difficult decision is which transformation to use to achieve the stated purpose. Ultimately
the decision depends on the type of data involved but in many cases it is simply a matter of
determining post-hoc which transformation works best. Some general rules of thumb are given
below.
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Exploratory Analysis... monotonic

transformations
Ranw Data Martrix

Site A B C D E F| Total

1 1 1 1 3 3 1 10

2 2 2 4 6 6 0 20

3 10 10 20 30 30 0 100

4 3 3 2 1 1 0 10

5 0 0 0 0 1 0 1

6 0 0 0 0 20 0 20

Total 16 16 27 40 61 1 161

h=%" (power)
) “*1 I -V ’

Stel] A B C D E _ F[Total

1 1 1 1 1 1 1| 6

2 1 1 1 1 1 0l 5

3 1 1 1 1 1 0| 5

4 1 1 1 1 1 0| 5

5 0 0 0 0 1 0 1

6 0 0 0 0 1 0 1
Totall 4 444 6 1 73

Binary transformation

Binary presence/absence
Transtormation
b,=x;" (power)

Domain of x: All

Range of f(x): 0 and 1 only

m Converts quantitative data into
nonquantitative data

m Applicable for species data

B Nost useful when there 1s little
quantitative imnformation present

B (Can be a severe transformation

Any quantitative data can be transformed to binary present/absent data by taking the value raised to
the zero power. Hence, the binary transformation is actually a special case of the power

transformation (see below) when the power is zero.

The acceptable domain of x (i.e., acceptable values of the raw data) is anything and the
transformation returns a 0 or 1. The binary transformation converts quantitative data into
nonquantitative data; is especially applicable for species data; is most useful when there is little
quantitative information present in the variable; and can be a severe transformation since all the
quantitative information is removed from the variable.
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Exploratory Analysis... monotonic

transformations
Ranw Data Matrix: Log Transformation
Site A B 4 D E F| Total —lAc .
1 1 1 1 3 3 1 10 bii 1()8(11]+1)
2 2 2 4 6 6 0 20
3 10 10 20 30 30 0 100 . . )
451 g g g :, 1 8 1? Domain of x: >0
6 0 0 0o o 20 0 20 Range of f(x): All
Total 16 16 27 40 61 1 161 i s
® Compresses high values and
bi,:k)g(xi,""l) spreads low values by
‘A 0 expressing ralues as orders
. of magnitude
Site A B C D E F| Total =
030 030 030 060 060 030 241 R o L R L Y
2| 048 048 070 085 085 000 334 Jsetul when high degree o
3] 104 104 132 149 149 0.00 6.39 SRR RSN, 1), S P .
4 060 060 048 030 030 000 228 ariation; ratio of Lugebt to
5[ 000 000 000 000 030 000 030 el Tt oot AL 5 .
6| 0.00 0.00 000 000 132 000 132 bm’l,ﬂ,ebt 10; hlghh
Totall 242 242 280. 3.24. 4.86. 0.30| 16.05 posttively skewed data

Log transformation

The log transformation is very
common in environmental data.
The acceptable domain of x is
non-zero positive values (note,
the log of zero is undefined)
and the transformation returns
any real number (positive or
negative). The log
transformation compresses high
values and spreads low values
by expressing values as orders
of magnitude; is very useful
when there is a high degree of
variation among the values (e.g.,
ratio of largest to smallest >10);
and is often used to adjust
highly positively skewed data.

Exploratory Analysis... monotonic
transformations

Log Transformation

b;=log(x;+1)

Histogram of SWTH

Histogram of WAVI

WAVI

log transformation J

Density
canwan
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Exploratory Analysis... monotonic

Domain of x: >0
Range of f(x): >0

the effect of the

values

transformations
Power Transformations
12
—p=12
104 —p=13
—p=14
8 = U5 |
— p=1/10
b 61
4_
2_
0 T T T T T T T T T T
S2RRELSL B8RS
X
Power transformation

Power Famﬂ}* Transformation

b, =xP

m Dxfferent exponents change

transformation; the smaller
the exponent, the more

compression applied to high

® Flexible transformation useful
for a wide vanety of data

The power transformation is a versatile transformation that involves raising the value to any
specified power, usually less than 1. The domain of x is >0 and the transformation, regardless of

power, returns a value in the
same range. The power
transformation has a varying
effect depending on the power
used; different exponents change
the effect of the transformation;
the smaller the exponent, the
more compression applied to
high values. Consequently, the
power transformation is a
flexible transformation useful for
a wide variety of environmental
data. Note, the square-root
transformation is simply a special
case of the power transformation
when the exponent is equal to
0.5.

Exploratory Analysis... monotonic
transformations

Power Family Transformation
_Jn:};ﬂl"
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Exploratory Analysis... monotonic

transformations
Raw Data Matrix ; ;
Ste— A — B¢ Db F—F Tom Logit Transformation
1 006 006 004 008 005 100 1.29 — 4 e
2| 013 013 015 015 010 000[ 065 bl] 1Og(}&11/(1 \J)
3| 063 063 074 075 049 000 3.23
4| 019 019 007 003 002 000 049
5| 000 000 000 000 002 000[ 002
6/ 000 000 000 000 033 000 033 NI e
Total 1 1. . T i A 6 Domanlﬂoﬂt x: 0-1
Range of f(x): -o0 - o
b, =log(x;/(1 X)) ® Spreads end of the scale
1 1 i . g
while compressing the
Site A B ¢ D E _F| Toml muddle for proportion data
1| 275 275 318 244 294  Inf 141 - _
2l 190 19 173 173 22 dInf 947 B [Useful for proportion data
3| 053 053 105 105 004 dnf 212
4| 152 152 250 348 389 dnf 13 to create unbounded
5|  Jnf  dnf  Jnf dnf 389 dnf -2.89 T e
6 dnf dnf drf dnf -075  dnf -0.75 distribution
Total| 564 564 645 661 137  nja] 8.1

Logit transformation

For data expressed as a proportion (i.e., range 0-1), the logit transformation is often recommended
by statisticians. The acceptable domain of x is 0-1 and the transformation returns a value in an
unbounded range (- to ©).

The effect of the
transformation is to spread the Exploratory Analysis... monotonic
end of the scale while transformations

compressing the middle, . .
which can be quite useful for Loﬁlilfraﬂ'Sformfanﬂ

: 5= log(xy/ (1xy))
proportion data when the
desire is convert a bounded Histogram ar s i Hetogram ofseci
distribution to an unbounded L —
one, which can affect the
choice of the appropriate
probability distribution in the
parametric statistic model.
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Exploratory Analysis... monotonic
transformations

Raw Data Matrix

Arcsin Square Root

Sitel A B € D E __F|Total 3 .
1| 006 0.06 004 008 005 1.00, 1.29 szlllSt(:)ﬂnﬂtl(:)ll
2| 013 0413 015 015 010 0.00| 0.65 P
3 063 063 074 075 049 000 323 b2/ )
4/ 019 019 007 003 002 000 049 Y Y
5 000 000 000 000 002 000 0.02
6000 000 000 000 033 000 033 )omain of x: 0-1
Total 1. 1. 1. 1. 1. 1 6 . M
Range of f(x): 0-1
o B A P e (A "
bi_]_(—/ m) s (x;) m Spreads end of the scale
while compressing the
=SB A B © 0 E F oo muddle for proportion data
1| 016, 016, 012, 018, 0.14_ 100, 176 : .
2 023023 025 025 020 000 117 W [lseful for proportion data
3| 058 058 066. 067. 0.49. 0.00] 2.98 . e
4] 029 029 018 010 008 000 093 with positive skew (can use
5| 000, 0.00 000 0.00 003 000 008 et e e e e
6| 0.00. 0.00 0.00_ 0.00 0.39. 0.00[ 0.39 arcsine transformation for
Totall 1.256_1.256 1.21 _1.198 1.392_ 1|7.3125 negative skew)

Aresine square-root transformation

For data expressed as a proportion (i.e., ranges 0-1), the arcsine square-root transformation is also
often recommended by statisticians. The acceptable domain of x is 0-1 and the transformation
returns a value in the same

range (0-1). Like the logit

transformation, the effect of the EXPIOY atory AnalYSiS--- monotonic
transformation is to spread the transformations

end of the scale while Arcsin Squate Root
compressing the middle, only Transformation

the arcsine square-root by=(2/my*sin"'(x; "

Histogram of ieif Histogram of MLS

transformation maintains the
original 0-1 range of the data.

y
[
! |
/
Density

This transformation can be "o

useful for proportion data with I

positive skew. Note, the arcsine /
asin transformation

transformation (minus the v
square root) can be used for g B
negative skew.

[
L
/
/
Density
o s m v a

W
U
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Exploratory Analysis... monotonic
transformations

Rd.ﬁ Dara Marrix Cosine Transformation
Site A B c D F| Total

E
P i 2
2 =2 & = & &= b;=(cos(rad(z-x;))+1)/2

2

3 33 45 120 5 0 75| 278 s=refer e axis deorees
4 45 0o 270 0 355 g0l 750 Z—rererence axis egrees
5 90 280 225 10 340 45| 990
6

355 35 330 0 15 a5 830 s T . T
o 35 %5 0 0 15 % 80  Domain of x: 0-360 degrees

Range of f(x): 0-1

bi_,:(COS(l'ﬂd(()‘xl,))"‘1)/ 2 = Converts circular measure
(aspect) mto hinear gradient

Sitef] A B € D E F[ Total s TR 0L O o
1 100 000 100 079 100 050 4287 along specified reference
2| 099 085 100 095 100 033 5.128 AX1S
3| 092 085 025 100 100 063 465
4 08 100 050 100 100 059 4.938 i [T Bl
5/ 050 059 015 099 087 085 4.049 INecessary 1or carcular
6| 1.00 091 0093 1.00 098 046 528 sseien: oy

Total| 5.263 4.204 3.829 5.73 5051 3.355] 28.33 aspect data

Cosine transformation

For circular data expressed in degrees, where the beginning and ending value of the numeric
sequence (0 and 360) are equivalent, transformation is necessary prior to statistical modeling. The
exception is with special statistical methods design specifically for such data. However, to use most
conventional methods, the circular data requires transformation. The cosine transformation is the
most commonly used and this involves first converting decimal degrees to radians and then taking
the cosine of the radians. The +1 and /2 in the equation are used to scale the result to 0-1. The
acceptable domain of x is 0-360 degree and the transformation returns a value between 0-1. The
cosine transformation converts decimal degrees into a linear gradients defined along a specified
reference axis. The g parameter in the formula is used to specify the reference axis in decimal
degrees. For example, if =0 the reference axis is oriented north-south and the transformation will
return values approach 1 as the angles approach the north and 0 as the angles approach the south
from either direction. This transformation is common used to convert slope aspect into a usable
form.

6
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Exploratory Analysis... monotonic

transformations
Some Rules of Thumb

m Use a log or square roof for ® Consider binary
“highly” skewed data or (presence/absence) when:
ranging over >2 orders » percent zeros high (say
of magnitude >50%)

m Use arcsine squareroot for > number of distinct values
data expressed as a 2 low (say < 10)
proportion ._. m If applied to related variable

set (e.g., species), then use
same transformation so that
all are scaled the same;
otherwise, transform

indep endenﬂy

®m Use cosine for circular
data (not to be
confused with
circular statistics)

Some rules of thumb

Here are some general rules of thumb for using transformations:

Use a log or square root for “highly” skewed data or ranging over >2 orders of magnitude.

Use arcsine squareroot for data expressed as a proportion.

Use cosine for circular data.

Consider binary (presence/absence) transformation when either the percent zeros high (say
>50%) or the number of distinct values is low (say < 10)

If applied to related variable set (e.g., species), then use same transformation so that all are scaled
the same; otherwise, transform independently.
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Exploratory Analysis... standardizations

r o When to Standardizer
Raw Data Matrix: SR .

Steg A B ¢ © E o] ™ To place on equal footing
g g e el highly unequal sample units
bl3lde o 20 30 30 ol ol or variables (e.g., species)

4 3 3 2 1 1 0 10 b
5 0 0 0 0 1 0 1 E . - S— .
™ - T
d 6 o o o 1 o =0 To better represent the
Tatll 15 6 o7 WO 61 ] 16 patterns of interest
bi,:Xii / max(x;) Which Standardization?
® Depends on objective (sample

Site] A B C D E __ F| Total ] S 7 :
Al 0350 0318010003,  or variable adjustment) and
: 2] 033 033 067 1.00 1.00 0.00[f 3.33]; i ) e
1 3] 033 033 067 100 100 000 333 statistical technique

000 000 000 oco 100 ooof 100 ™ DDepends on which standard
(variance, total, max, etc.)
makes sense

8.2 Standardizations

In many environmental data sets, especially community data sets involving species abundances, it is
often quite useful to standardize (or relativize) the data before conducting subsequent analyses.
Recall that data standardization involves adjusting a data value relative to a specified standard
derived from the corresponding row (sample) or column (variable) of the data set. Keep in mind
that standardizations can fundamentally alter the patterns in the data and can make the difference
“between illusion and insight, fog and clarity” (McCune and Grace, 2002).

When to standardize?

Knowing when to standardize is exceedingly difficult; recall the general purposes stated previously:

* Make units of variables comparable when measured on different scales.

* Reduce the effect of total quantity in sample units, to put the focus on relative quantities.

* Equalize (or otherwise alter) the relative importance of variables (e.g., common and rare
species).

Which standardization?

An even more difficult decision is which standardization to use to achieve the stated purpose.
Ultimately the decision depends on the objective (e.g., sample or variable adjustment), the
subsequent statistical method used, and which standard (as the basis for the adjustment) makes the
most sense. Unfortunately, wisdom in this regard only comes through experience.
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Exploratory Analysis... standardizations
Row or Column Standardization

Raw Data Matrix:

by =(x;-%) /s,

Site A B [o4 D E F| Total Sitel A B C D E F| Tota
i 1 1 1 3 3 1 10 A -0.71 0.71 071 7141 141 -0.71 0.00
2 2 2 4 & & o0 20 2| 060 -0.60. 0.30 1.21. 1.21 -1.51] 0.00
3 10 10 20 30 30 o0 100 3[ -0.60 -0.60 0.30 1.21 1.21 -1.51] 0.00
4 3 3 2 1 1 0 10 4 1.21 121 0.30 -0.60 -0.60, -1.51 0.00
55, o o o0 o0 1 o 1 5 -0.45. -0.45 -0.45 -0.45 2.24 -0.45 0.00
6 0 0 0o 0o 20 o 20 6| -0.45 -0.45 -045 -0.45 224 -0.45 0.00
Total 16 16 27 40 61 1] 161 Total -16 -16 -0.7 2.329 7.695 6.12. 0
bR m Standardizations adjust matrix
elements by a row or column
Sitey) A B C D E __ F[Total /
1] -048 -048 050 -034 -065 224 -022 standard (e.g., max, sum, etc.)
2( -0.19 -0.19. -0.07_ -0.06. -0.38  -0.45| -1.35 -
3[ 213 213 219 219 1380 -045/ 1000 m NP W R :
3 orie oetot e oraa et orael o 0 All b‘tand;ud‘u(1t1(_)nb can be
5( -0.77. -0.77_-0.64_-0.63_-0.83 -0.45[ -4.09 applied to either rows or
6( -0.77 -0.77. -0.64_ -0.63. 0.89 -0.45 -2.36 : .
Total 0 0 0 0 __0_ 0 0 columns (or both)

It is important to remember that standardizations adjust data elements by a row or column standard
(e.g., max, sum, etc.), in contrast to transformation which depend on no standard. In addition, all
standardizations can be applied to either rows or columns (or both).

In the example shown here, the raw data matrix contains 6 sample plots (rows) and 6 species
variables (columns). The standardization employed is the z-score standardization which involves
centering the values on zero and scaling the spread to 1. This is accomplished by subtracting the
mean from each value and dividing by the standard deviation. This z-score standardization can be
applied to each column (lower left matrix) or each row (upper right matrix), with very different

results.
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Exploratory Analysis... standardizations
Row or Column Standardization

Ranw Data Matrix

Stege A B C D E _ F| Total Row Standardization
1 1 1 1 3 3 1 10 i . .
2l 2 2 4 8 6 o0 20 ® When the prmcipal
3 10 10 20 30 30 0 100 B ) o -~ g 3
sl 3 = 2 1 % @ g concern 1s to adjust for
55 o o o o 1 o 1 s g o AT e
5 SO I differences (e.g., total
Total| 16 16 27 40 &1 1| 16 abundance, diversity)
~ < B AR among sample units 1n
‘ Column Standardization AMONE SAMPILE LIk

order to place them on

B \Vhe > principal concern 1s tc :
When the principal concern 1s to equal footing,

adjust for differences (e.g.,

. . ' 2 T (L €
variances, total abundance) among When the focus is on the
vartables (e.g., species) in order to profile within a sample
place them on equal footing unit.

= When the focus 1s on the profile
across sample units

The choice between a column or row standardization has important implications.

A column standardization is appropriate when the principal concern is to adjust for differences (e.g.,
variances, total abundance) among variables (e.g., species) in order to place them on equal footing,
for example when the focus is on the profile across sample units.

A row standardization is appropriate when the principal concern is to adjust for differences (e.g.,
total abundance, diversity) among sample units in order to place them on equal footing, for example
when the focus is on the profile within a sample unit.

The choice between these two is often confusing and takes careful thought, lots of practice, and lots
of trial and error.



Explore, Screen & Adjust Data

41

Exploratory Analysis... standardizations

Row or Column Standardization

m Total...drvide by margm total

® Max...dwvide by margin
maximum

m Range...standardize values to
range 0-1

m Frequency...divide by margin
maximum and multiply by
number of non-zero items, so
that the average of non-zero
items 1s 1

™ Hellinger...square root of
method=total

Nomnalization...make margin
sum of squares (Xz) equal 1

Standardize...scale to zero mean
and unit vanance (z-scores)

Chi.square...drvide by row sums
and square root of column
sums, and adjust for square
root of matrix total

Rank...convert values to their

ranks
Quantile...convert values to
their quantiles (e.g.,

percentiles)

There are lots of different common standardizations and we will make no attempt to describe them
in detail or illustrate by example their differences, else we would need an entire lecture devoted to
this topic. The following list provides a glimpse into the myriad standardizations available, where
margin equals either column or row:

Total...divide by margin total
Max...divide by margin maximum
Range...standardize values to range 0-1

Frequency...divide by margin maximum and multiply by number of non-zero items, so that the

average of non-zero items is 1
Hellinger...square root of method=total

Normalization...make margin sum of squares (i.e., x*2) equal 1
Standardize...scale to zero mean and unit variance (z-scores)
Chi.square...divide by row sums and square root of column sums, and adjust for square root of

matrix total
Rank...convert values to their ranks

Quantile...convert values to their quantiles (e.g., percentiles)
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Some rules of thumb

Here are some general rules of

thumb for using standardizations:

e The effect of standardization on
the analysis depends on the
variability among rows and/or
columns. If these values are
small, say <50, it is unlikely that
standardization will accomplish
much. However, if these values
are large, say >100, then it is
likely that standardization will
have a large effect on the
results.

e Consider using row
standardizations for species data
sets, commonly row
normalization, chi.square, total
and hellinger standardizations
based on recommendations in
Legendre and Gallagher 2001.

¢ Consider column
standardizations to “equalize”
variables measured in different
units and scales, commonly
column z-scotres, normalization,
total, and range
standardizations.
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Exploratory Analysis... standardizations
Some Rules of Thumb

® Fffect of standardization on analysis depends
on variability among rows and/or columns
Table 9.2 (McCune and Grace 2002). Evaluation of degree of

variability in row or column totals as measured with the coefficient
of variation of row or column totals.

CV (%) Variability among rows or column

i
<50 Small. Relativization usually has small effect on
qualitative outcome of the analysis

50-100 Moderate (with a corresponding moderate effect
on the outcome of further analysis)

100-300 Large. Large effect on results

>300 Very large

Exploratory Analysis... standardizations
Some Rules of Thumb

Ran Data Matrix: Row Total Standardization
Site A B [ D E F| Total Sit: A B C D E F[Totall
1 1 1 1 3 3 1 10 1) 0.10 0.10 0.10 0.30 0.30 0.1 1
2 2 2 4 6 6 0 20 2| 010 0.10 0.20 0.30 0.30 0.00 1
3 10 10 20 30 30 0| 100 3/ 0.10 0.10 0.20 0.30 0.30 0.0 1
4 3 3 2 1 1 0 10 4| 030 030 0.20 0.10 0.10 0.0 1
5 o o o o 1 o 1 5/ 000 0.00 0.00 000 1.00 0.00 1
6 0 0 0 0 20 0 20 6/ 0.00 0.00 0.00 0.00 1.00 0.00 1
Total 16 16 27 40 61 1| 161 |Tota| 0.60_0.60_0.70_1.00_3.00 0.1q 6
® Consider row > Row ¢lisquare (ED =
standardizations for spectes chisquare distance of
data sets, commonly: CA/CCA)
» Row nomnalize (Euclidean » Row wral (ED = species
distance (ED) = chord profile distance)
distance) > Row Jellinger (ED =
(From Legendte and Gallagher 2001) Hellinger distance)

Exploratory Analysis... standardizations
Some Rules of Thumb

Ran Data Matrix:

Site A B [+ D E F| Total -~ .
11—+ 3 35 1 13 ™ Constder column
2 2 2 4 6 6 0 20 b, 3 g 2 , 2
3 10 10 20 3 s o 100 standardizations to “equalize”
oozt 19 1% varables measured in different
6. 0o o o o 2 o 20 yunitsand scales, commonly:
Total 16 16 27 40 61 1 161 ¥

» Column standardize (z-scores =
zero mean and unit variance)

» Column romnalize (uncentered
with unit variance)

044 044 045 031 059 204 -0.20
2| -0.18 -0.18 -0.06 -0.06 -0.35 -0.41] -1.23
3| 194 194 200 200 164 -0.41] 9.12 R
4 009 0.09 032 -049 -0.76 -0.41[ 180 > Column 7ora/ (col sums = 1)
5/ 071 -0.71 058 -057 -0.76 -0.41 -3.73

6| -0.71 -0.71 058 057 0.82 -0.41[ -2.16
a0 0 0 0 _0_ 0 0

» Column sunge (col range 0-1)
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Exploratory Analysis... standardizations
Some Rules of Thumb

A m Standardizations may not matter
depending on subsequent analysis, e.g_:

» Proncipal components of corzelation
matrx haz built in column
standardization

® No theoretical basis for selecting the
“best” standardization - should justfy
on environmental grounds and perhaps
conduct sensitrvity analysis

e Standardizations may not matter depending on the subsequent statistical analysis employed. For
example, column standardization is not necessary for analyses that use the variables one at a time
(e.g., ordination overlays) or for analyses with built-in standardization (e.g., principal
components analysis of a correlation matrix).

* Before applying any standardization, be sure to understand what the standardization does. In
same cases, standardization is built into the subsequent analyses and therefore unnecessary — but
to know this requires that we already understand the mechanics of the methods we intend to use
(which we haven’t gotten to yet). At this point, we might simply explore what various
standardizations do to data so that we are ready and able to standardize the data as needed when
we decide on a particular statistical procedure.

e Ultimately, I’'m not sure that there is any theoretical basis for selecting the “best” standardization
- we should justify our choice on environmental grounds and perhaps conduct sensitivity
analysis (i.e., examine how changing the standardization method or whether to standardize or
not effects the results).
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Exploratory Analysis... extreme values
“Outliers”

® What are outliers? 4

» Sample units with extreme the
values for individual variables g

(univanate outliers) or sample

units with unusual combmation ) utlier S

of values for more than one >

rartable (mulitvariate outliers) i

® Why worry about outliers? | ¢
» Qutliers can have a large effect i
on the outcome of an analysis i
and therefore can lead to : %
erroneous conclusions i

(most of the data
plots here)

9. Extreme values (“outliers”)

Environmental data commonly contain values that are “extreme”, or considered to be “outliers” in
the sense that they are much larger or smaller than the rest of the data and thus fall “outside” the
bulk of the data. These so-called outliers can have a large effect on the outcome of an analysis and
therefore can lead to erroneous conclusions if not dealt with properly. What constitutes a true
“outlier” depends on the question being asked and the analysis being conducted. There is no general
rule for deciding whether extreme observations should be considered “outliers” and deleted from
the data set before proceeding with the analysis. Nevertheless, it is important to have an
understanding of the number and pattern of extreme observations in order to gauge the robustness
of the results. A good practice is to repeat the analyses with and without the suspect points and
determine if the results are sensitive or robust to their inclusion. If the results are sensitive to the
inclusion of these high-leverage points, you should probably carefully consider whether those points
represent a meaningful environmental condition, and act on them accordingly.
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Exploratory Analysis... extreme values

“Outliers”

B [Unrvariate outhiers:
» Values say >3 standard
deviations from the mean

of the variable

Standard deviation scores >3

AMGO
81 6.50
82 6.50
83 4.27
84 6.50
85 NA
87 NA
89 NA
90 NA
91 NA

AMRO
491
NA
430
NA
NA
NA
NA
NA
NA

BAEA
NA
NA

BCCH
NA
NA

4.29
NA
544
NA
544
NA
NA

Univariate outliers

frequency

80

60

40

20

AMRO Distribution

Extreme
observations

L LTI ETTETETIE

T T 1
3 4 5

L_-_
T 1
o 1 2

standard deviations

There are several ways to identify extreme values, including both univariate and multivariate
methods. It is always a good idea to begin with a univariate inspection. The most common
univariate method involves computing the z-score standardized values for each variable and looking
for values that are greater than say 3 standard deviations from the mean. These are observations that
fall outside 99.7% of the data under the assumption of a normal distribution and are regardless of
distribution likely to be extreme in the sense of falling outside the bulk of the data.

In the example shown here, there are several species with relative abundance values that are greater
than 3 standard deviations from the mean relative abundance of the species, as depicted in the table.
Note, these extreme observations show up the histogram of the z-scores for the American Robin

(AMRO).
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Exploratory Analysis... extreme values
“Outliers”

® Multtvariate outliers:
» Values say >3 standard

Histogram of Manhattan distance

0.30

deviations in average o

distance to other Zos

samples from the mean iped

average distance among -
S’dﬂlpleS average dist

Standard deviation scores >3 .,
avedist sd 10 {(\ observations

81 18.399 4.624 B \ ;

82 19.294 4.931 o al i

83 19.331 944 00 /| : — e —
85 15.294 3.558 - 0 1 2 3 4 5

standard deviation of average distance

Multivariate outliers

In the context of a multivariate data set, just because an observation is extreme on a single variable,
doesn’t mean it is going to be a multivariate outlier. More importantly, an observation may not be a
univariate outlier and yet still be an outlier when two or more variables are considered jointly. Thus,
with multivariate data it is instructive to see if each observation is extreme in multivariate space.

One method for evaluating multivariate outliers is to measure the distance from each sample point
to every other sample point based on some measure of environmental distance — unfortunately this
is a topic that we do not have time to cover so you will have to take this one on faith, but briefly, if
you recall Euclidean distance from basic match (remember the Pythagorean theorem for measuring
the distance between points in 2-dimensional space), a simple measure of distance is the Euclidean
(or straight line) distance between points in multidimensional space. Then, we compute the average
distance from each point to every other point. Points that are extreme in a multivariate sense should
have a large average distance to all other points. Finally, we compute the z-scores for the average
distances, which simply puts the average distance information on a scale that we can all understand
and interpret; i.e., standard deviation units. So, a point that is greater than say 3 standard deviation
units from the average in its average multivariate distance is an extreme point and warrants
attention. In the example shown here, 4 sample points where identified as being extreme based on a
particular distance metric known as Manhattan distance. The histogram merely shows the same
thing graphically.
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Exploratory Analysis... extreme values

“Outliers”
B MNultrvariate outliers: FERAGE UNAGE —hon sones
» Extreme values usually show up N
in multivariate plots; e.g., 1solated -
points m ordination plots, single- n
member clusters in cluster o
analysis, etc. n
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Not surprisingly, there are lots of other multivariate techniques that can aid in identifying potential
outliers. Shown here are two methods, known as unconstrained ordination and hierarchical cluster
analysis. The details of the methods are beyond the scope of this lecture and not important to
understanding the concept; they simply reveal the existence of extreme points or outliers in different
ways. In the ordination plot on the left, the extreme point shows up as being isolation from all other
points in the 3-dimensional scatterplot. In the cluster analysis plot on the right (known as a
dendrogram), the extreme point shows up as not connecting (or clustering) to the other points until
a much greater environmental distance.
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Exarnine data at all stages of
analysis (1.e., input data,
transformed,/standardized data,
ecological distance matris, results
of analysis) for extreme values

Be aware of potential impact of
extreme values m chosen analysis

Delete extreme values only if
justifiable on environmental

grounds

" Conduct sensitivity analysis

Some rules of thumb

XD

Exploratory Analysis... extreme values
Some Rules of Thumb

l.\".\._}.\-:.

+_l|"..

P utliers

mullivarmle oulliors

rewnd ol e
ok by

L4 |

Here are some general rules of thumb for dealing with extreme values or outliers:

* Examine data at all stages of analysis (i.e., input data, transformed/standardized data,
environmental distance matrix, results of analysis) for extreme values.

* Be aware of the potential impact of extreme values in the chosen statistical analysis.

* Delete extreme values only if justifiable on environmental grounds. As a general rule,
observations should not be dropped automatically just because they have extreme values. It is
one thing to identify extreme observations that have high leverage on the results, but it is
another thing altogether to delete these observations from the data set just because they have

high leverage.
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e Conduct sensitivity analysis to determine the realize impact of extreme values. Quite simply, this
involves conducting the analysis with and with potential outliers and seeing how much the

results vary.
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